Приложение 2 к РПД
Общая и экспериментальная физика:
Молекулярная физика и основы термодинамики
44.03.05 Педагогическое образование
(с двумя профилями подготовки)
направленность (профили)
Математика. Физика
Форма обучения – очная
Год набора – 2020

ОЦЕНОЧНЫЕ СРЕДСТВА ДЛЯ ПРОВЕДЕНИЯ ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ ОБУЧАЮЩИХСЯ ПО ДИСЦИПЛИНЕ (МОДУЛЮ)

1. Общие сведения

1.	Кафедра	Математики, физики и информационных технологий
	Hamanasana	44.03.05 Педагогическое образование
2.	Направление подготовки	(с двумя профилями подготовки)
3.	Направленность (профили)	Математика. Физика
1	Пионичница (можит)	Б1.О.18.02 Общая и экспериментальная физика:
4.	Дисциплина (модуль)	Молекулярная физика и основы термодинамики
5.	Форма обучения	очная
6.	Год набора	2020

2. Перечень компетенций

- **ОПК-8**: Способен осуществлять педагогическую деятельность на основе специальных научных знаний

3. Критерии и показатели оценивания компетенций на различных этапах их формирования

Этап формирования компетенции	Формируемая компетенция	Критерии	Формы контроля сформированности компетенций		
(разделы, темы дисциплины)		Знать:	Уметь:	Владеть:	
Молекулярно- кинетическая теория		Основные явления, происходящие в термодинамических	Логично и последовательно представлять освоенное знание в рамках изучаемой дисциплины;	Математическими и физическими методами решения	
Распределение Максвелла		системах; Основные физические величины и физические	Решать задачи повышенной сложности в рамках изучаемой дисциплины;	задач в рамках изучаемой дисциплины;	
Явления переноса		константы, их определения, способы и единицы их измерения (в том числе в СИ) в	Работать на экспериментальных установках, проводить наблюдения и эксперименты в области классической механики;	Грамотной, логически верной и аргументированно	Выполнение и защита соответствующих
Первое начало термодинамики	ОПК-8	рамках изучаемой дисциплины; Основные	Анализировать и обрабатывать экспериментальные данные, полученные в лаборатории, в	построенной устной и письменной речью;	задач индивидуального РГЗ
Второе начало термодинамики		фундаментальные опыты по молекулярной физике и их роль в	рамках изучаемой дисциплины, а также физический смысл полученных результатов;	Навыками в постановке и проведении	Выполнение и защита соответствующих
Термодинамические процессы		развитии науки; Алгоритмы решения	Определять погрешность измерений, оформлять	физического эксперимента, а	лабораторных работ
Реальные жидкости и газы		теоретических и экспериментальных	результаты физических экспериментов в рамках	также обработке его результатов.	
Фазовые переходы		задач в рамках изучаемой дисциплины;	изучаемой дисциплины; Письменно оформлять результаты проведённой работы;		

Шкала оценивания в рамках балльно-рейтинговой системы: «неудовлетворительно» – 60 баллов и менее; «удовлетворительно» – 61-80 баллов; «хорошо» – 81-90 баллов; «отлично» – 91-100 баллов

4. Критерии и шкалы оценивания

4.1. Активность на лекционном занятии

Уровень активности	Низкая	Высокая
Количество баллов	0,25	0,5

Активность считается высокой, если обучающийся в ходе занятия не отвлекается, ведёт конспект занятия, задаёт уточняющие вопросы.

4.2. Активность на практическом занятии

Уровень активности	Низкая	Высокая
Количество баллов	0,25	0,5

Активность считается высокой, если обучающийся в ходе занятия не отвлекается, ведёт конспект занятия, задаёт уточняющие вопросы.

4.3. Выполнение и защита индивидуального расчётно-графического задания

Уровень	1	2	3	4	5	6	7	8	Защита
выполнения	задача	задачи	задачи	задачи	задач	задач	задач	задач	
Количество баллов	2	4	6	8	10	12	15	18	20

Оценивание индивидуального расчётно-графического задания состоит из 2 частей: баллы выставляются за количество правильно решённых задач, оформленных в соответствии с принятыми правилами оформления и за защиту выполненного задания. Защита представляет собой ответ на вопросы преподавателя по выбранным задачам задания.

4.4. Выполнение лабораторной работы

Уровень выполнения	1 работа	2 работы	3 работы	4 работы	5 работ	6 работ	7 работ
Количество баллов	1	2	3	4	5	7	10

Баллы за выполнение лабораторных работ выставляются в зависимости от количества выполненных работ. В ходе лабораторной работы обучающийся должен провести эксперимент и осуществить ряд изменений исследуемых величин.

4.5. Предоставление отчёта по выполненной лабораторной работе

Уровень выполнения	1 работа	2 работы	3 работы	4 работы	5 работ	6 работ	7 работ
Количество баллов	1	2	3	4	5	7	10

Баллы за предоставление отчёта по выполненным лабораторным работам выставляются в зависимости от количества выполненных работ. Отчёт должен быть оформлен в соответствии с принятыми правилами оформления.

4.6. Защита лабораторной работы

Уровень выполнения	1 работа	2 работы	3 работы	4 работы	5 работ	6 работ	7 работ
Количество баллов	1	2	3	4	5	7	10

Защита лабораторных работ представляет собой собеседование с преподавателем о выполненной работе. Баллы выставляются в зависимости от количества защищённых работ.

5. Типовые контрольные задания и методические материалы, определяющие процедуры оценивания знаний, умений и навыков и (или) опыта профессиональной деятельности, характеризующих этапы формирования компетенций в процессе освоения образовательной программы

5.1. Типовое индивидуальное расчётно-графическое задание

Решите и оформите в соответствии с принятыми требованиями к оформлению следующие задачи из сборника [3]:

1.15	1.56	1.96	1.184	1.262	4.4	1.308	1.238

5.2. Типовой экзаменационный билет

- Теоретический вопрос: Динамические и статистические закономерности в физике. Макроскопическое состояние. Параметры состояния. Уравнение состояния идеальных газов.
- Задача.
- Лабораторная работа.

5.3. Вопросы к экзамену:

- 1. Динамические и статистические закономерности в физике. Макроскопическое состояние. Параметры состояния. Уравнение состояния идеальных газов.
- 2. Модель идеального газа. Основное уравнение кинетической теории идеального газа. Давление в рамках этой теории. Молекулярно-кинетический смысл абсолютной температуры.
- 3. Уравнение состояния идеального газа. Универсальная газовая постоянная и постоянная Больцмана. Изопроцессы.
- 4. Основные газовые законы. Вывод уравнений газовых законов (изотермического и изобарического изохорического и закона Дальтона) из основного уравнения молекулярнокинетической теории.

- 5. Микроскопические параметры. Вероятность и флуктуации. Распределение молекул /частиц/ по абсолютным значениям скорости. Распределение Максвелла.
- 6. Распределение Больцмана. Барометрическая формула.
- 7. Внутренняя энергия и теплоемкости идеального газа. Теорема Больцмана о распределении энергии по степеням свободы.
- 8. Основные понятия термодинамики. Задачи термодинамики. Обратимые, необратимые и круговые процессы. Основное уравнение термодинамики идеального газа.
- 9. Первое начало термодинамики и его применение к изопроцессам в идеальных газах: изотермическому, изохорическому и изобарическому.
- 10. Первое начало термодинамики и его применение к адиабатическому процессу в идеальном газе.
- 11. Адиабатический процесс. Уравнения Пуассона для адиабатического процесса.
- 12. Цикл Карно. Максимальный КПД тепловой машины, работающей по циклу Карно. Выводы.
- 13. Энтропия системы и её свойства. Определение изменения энтропии системы, совершающей изохорический и изобарический процессы.
- 14. Энтропия системы и её свойства Определение изменения энтропии системы, совершающей изотермический процесс.
- 15. Реальные газы. Уравнение Ван-дер-Ваальса. Внутреннее давление и собственный объём молекул.
- 16. Реальные газы. Изотермы Ван-дер-Ваальса. Критическая изотерма и критическая точка. Сжимаемость газов.
- 17. Внутренняя энергия и теплоемкости реального газа. Эффект Джоуля-Томсона.
- 18. Понятие о физической кинетике. Теплопроводность в газах, жидкостях и твердых телах. Коэффициент теплопроводности.
- 19. Понятие о физической кинетике. Диффузия в газах, жидкостях и твердых телах. Коэффициент диффузии.
- 20. Понятие о физической кинетике. Вязкость газов и её температурная зависимость. Сдвиговая и объёмная вязкости. Время релаксации.